MixedEffectsModel
represents an allometric model that uses fixed and
random effects.
A named list containing one element, with a name representing the response
variable and a value representing the units of the response variable
using the units::as_units
function.
A named list containing the covariate specifications, with names
representing the covariate name and the values representing the units of
the coavariate using the units::as_units
function
A function that predicts the random effects, takes any named covariates in
covariates
as arguments
A function that takes the covariate names as arguments and returns a prediction of the response variable. This function should be vectorized.
A named list of parameters and their values
A boolean value indicating if the model produces predictions using only fixed effects. This is useful when publications do not provide sufficient information to predict the random effects.
An optional named list of descriptors that describe the context of the allometric model
A string containing an optional custom response definition, which is used instead of the description given by the variable naming system.
An optional named list of custom covariate definitions that will supersede
the definitions given by the variable naming system. The names of the list
must match the covariate names given in covariates
.
An instance of MixedEffectsModel
parameters
A named list of parameters and their values
predict_fn_populated
The prediction function populated with the parameter values
specification
A tibble::tbl_df of the model specification, which are the parameters and the descriptors together
predict_ranef
The function that predicts the random effects
predict_ranef_populated
The function that predicts the random effects populated with the fixed effect parameter estimates
fixed_only
A boolean value indicating if the model produces predictions using only fixed effects
MixedEffectsModel(
response = list(
hst = units::as_units("m")
),
covariates = list(
dsob = units::as_units("cm")
),
parameters = list(
beta_0 = 40.4218,
beta_1 = -0.0276,
beta_2 = 0.936
),
predict_ranef = function() {
list(b_0_i = 0, b_2_i = 0)
},
predict_fn = function(dsob) {
1.37 + (beta_0 + b_0_i) * (1 - exp(beta_1 * dsob)^(beta_2 + b_2_i))
},
fixed_only = TRUE
)
#> Model Call:
#> hst = f(dsob, newdata)
#>
#> hst [m]: total height of the stem
#> dsob [cm]: diameter of the stem, outside bark at breast height
#>
#> Random Effects Variables:
#>
#>
#> Parameter Estimates:
#> # A tibble: 1 × 3
#> beta_0 beta_1 beta_2
#> <dbl> <dbl> <dbl>
#> 1 40.4 -0.0276 0.936
#>
#> Model Descriptors:
#> # A tibble: 1 × 0